1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
| import math import random import time,os from matplotlib.pyplot import * import numpy as np
class Evolution(): def __init__(self, lower_bound, upper_bound, chromosome_size, population, mutation_rate, retain_rate, formula):
self.lower_bound = lower_bound self.upper_bound = upper_bound self.chromosome_size = chromosome_size self.num = population self.mutation_rate = mutation_rate self.retain_rate = retain_rate self.formula = formula self.best = 0
self.population = self.Gene_population()
def Gene_population(self): """ 获取初始种群(一个含有 self.num 个长度为 self.chromosome_size 的染色体的列表) """ return [self.Gene_chromosome() for i in xrange(self.num)] def Evolve(self, random_select_rate=0.5): """ 进化 对当前一代种群依次进行选择、交叉并生成新一代种群,然后对新一代种群进行变异 """ parents = self.Selection(random_select_rate) self.Crossover(parents) self.Mutation()
def Gene_chromosome(self): """ 随机生成长度为 self.chromosome_size 的染色体,每个基因的取值是 0 或 1 这里用一个 bit 表示一个基因 """ chromosome = 0 for i in xrange(self.chromosome_size): chromosome |= (1 << i) * random.randint(0, 1) return chromosome
def Fitness(self, chromosome): """ 计算适应度,将染色体解码为定义域之间的数字,代入函数计算 因为是求最大值,所以数值越大,适应度越高 """ x = self.Decode(chromosome) return eval(self.formula)
def Selection(self, random_select_rate): """ 选择 先对适应度从大到小排序,选出存活的染色体 再进行随机选择,选出适应度虽然小,但是幸存下来的个体 """
graded = [x for y,x in sorted([(y, x) for y, x in [(self.Fitness(chromosome), chromosome) for chromosome in self.population]],reverse = True)] retain_chromosome_size = int(len(graded) * self.retain_rate) parents = graded[:retain_chromosome_size] for chromosome in graded[retain_chromosome_size:]: if random.random() < random_select_rate: parents.append(chromosome) return parents
def Crossover(self, parents): """ 染色体的交叉、繁殖,生成新一代的种群 新出生的孩子,最终会被加入存活下来的父母之中,形成新一代的种群。 """ children = [] target_num = len(self.population) - len(parents) while len(children) < target_num: male = random.randint(0, len(parents)-1) female = random.randint(0, len(parents)-1) if male != female: cross_pos = random.randint(0, self.chromosome_size) mask = 0 for i in xrange(cross_pos): mask |= (1 << i) male = parents[male] female = parents[female] child = ((male & mask) | (female & ~mask)) & ((1 << self.chromosome_size) - 1) children.append(child) self.population = parents + children
def Mutation(self): """ 变异 对种群中的所有个体,随机改变某个个体中的某个基因 """ for i in xrange(len(self.population)): if random.randint(0, 100) < self.mutation_rate * 100: j = random.randint(0, self.chromosome_size-1) self.population[i] ^= 1 << j
def Decode(self, chromosome): """ 解码染色体,将二进制转化为属于定义域的实数 """ return self.lower_bound + chromosome * (self.upper_bound - self.lower_bound) / (2 ** self.chromosome_size - 1.0)
def Result(self): """ 获得当前代的最优值,这里取的是函数取最大值时 x 的值。 """ global x graded = sorted([(yi, xi) for yi, xi in [(self.Fitness(chromosome), chromosome) for chromosome in self.population]],reverse = True) chromosome = [xi for yi,xi in graded] fitness = [yi for yi,xi in graded]
if self.best < fitness[0]: self.best = fitness[0] os.system('cls') print '历史最优出现在第',x,'代, 个体为 '+ bin(chromosome[0])[2:] + ' 最优适应度 ' + str(self.Decode(chromosome[0])) + ' ,其值为 ' + str(fitness[0]) xi = [self.Decode(i) for i in chromosome] self.PlotAndSave(xi, fitness) return '最优个体为 '+ bin(chromosome[0])[2:] + ' 最优适应度 ' + str(self.Decode(chromosome[0])) + ' ,其值为 ' + str(fitness[0])
def PlotAndSave(self, chromosome, fitness): x = np.arange(self.lower_bound, self.upper_bound, 0.0001) y = eval(self.formula.replace('math','np')) plot(x,y) plot(chromosome, fitness, 'o') savefig('Best.jpg') close('all')
time.clock()
lower_bound = 0 upper_bound = 9 chromosome_size = 17 population = 200 mutation_rate = 0.1 generations = 2000 retain_rat = 0.2 formula = 'x + 10 * math.sin(5 * x) + 7 * math.cos(4 * x)'
gene = Evolution(lower_bound, upper_bound, chromosome_size, population, mutation_rate, retain_rat, formula) for x in xrange(generations): gene.Evolve() print '\r进化到第',x,'代',gene.Result(),
print '花费时间',int(time.clock()),'S' os.system('pause')
|